
BigBigUnityFormula(v4-Beta Extended +

MinimalFormalization)
A WhiteCrow HPC + Butterfly Algorithm Approach to the P vs NP

PSBigBig (Independent Developer)
hello@onestardao.com

https://onestardao.com

https://linktr.ee/onestardao

2025/3/29

Beta Notice (Work in Progress)

Status: This document is a Beta version and remains under continuous development. We do
not claim finality or official peer-reviewed acceptance. Further HPC testing, methodological
refinements, and multi-lab verifications are planned. Readers are encouraged to treat this as an
open-challenge draft, with collaboration and critical feedback welcome.

Abstract

This document (P vs NP) merges and extends elements from prior versions (v4.3 and
Final Extended+). We combine a Minimal Axiomatization perspective with extensive
HPC meltdown logs, including bridging expansions up to #999 and cosmic meltdown expan-
sions up to #50. Our main claim is conditional : if these bridging expansions (akin to large
cardinal assumptions) hold, then any HPC concurrency meltdown≥ 1 is forcibly undone,
implying sub-ex concurrency reminiscent of P = NP (2.0). We disclaim this does not con-
stitute a recognized proof under standard ZFC; the bridging expansions remain unverified,
HPC logs may be partially AI-based, and multi-year peer review is essential. Nonetheless,
we hope this unifies the more structured minimal approach with a large-scale HPC meltdown
scenario demonstration to provide both theoretical focus and abundant experimental logs.
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1 Introduction and Rationale

1.1 Background: P vs NP and HPC meltdown

The classical P vs NP problem asks whether NP-complete problems have polynomial-time (sub-
exponential) solutions or are inherently exponential. Our HPC meltdown analogy recasts
“exponential concurrency time” as meltdown≥ 1, meaning the HPC concurrency/time T (n)
scales like α 2Cn for some constants α,C. By contrast, meltdown= none means T (n) is sub-ex,
i.e. effectively polynomial or exp(no(1)). A cosmic meltdown≥ ∞ is yet another forced state,
introduced by the so-called cosmic meltdown expansions.

1.2 Goal of This (Beta) Version

In prior versions, we found two extremes:

(1) A more structured but shorter approach (“Final Extended+”) focusing on Minimal Axiom-
atization with bridging expansions only up to #30,

(2) A massive HPC scenario approach (“v4.3”) including meltdown expansions up to #999 and
cosmic meltdown #1..#50 plus hundreds of HPC log lines.

Here, we unify these to present a single document with:

(a) A Conditional Theorem under bridging expansions,

(b) Extensive HPC meltdown logs (some 200 lines or more),

(c) Clear disclaimers that bridging expansions remain beyond standard ZFC.

1.3 Structure of This Document

We first define HPC meltdown states, bridging expansions, and cosmic meltdown expansions.
Then provide a Minimal Axiomatization for bridging expansions #2..#30 in the main text,
while also referencing expansions #2..#999 from earlier drafts for large scenario coverage. We
show HPC meltdown logs for small n (like 50–60) and large n (up to 5000 or 8000), explaining
how meltdown≥ 1 toggles to meltdown= none, or meltdown= none toggles to meltdown≥ ∞,
ensuring meltdown≥ 1 never remains stable. Finally, we discuss cryptography ramifications,
disclaimers, and future directions.

2 HPC Meltdown Definitions and Toggling

2.1 meltdown(≥ 1) vs meltdown=none vs meltdown(≥ ∞)

Throughout, we let T (n) be HPC concurrency/time cost for an n-sized NP instance (e.g. 3-SAT
or TSP).

• meltdown(≥ 1): T (n) ≥ α 2Cn (some constants α,C > 0). Interpreted as exponential
blow-up ⇒ reminiscent of P ̸= NP .

• meltdown= none: sub-ex concurrency, exp(no(1)) or polynomial-like. This is akin to
P = NP .
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• meltdown(≥ ∞): a forced cosmic meltdown state, introduced by cosmic meltdown ex-
pansions, leading HPC meltdown never to settle in meltdown= none.

We claim bridging expansions forcibly remove meltdown≥ 1, while cosmic meltdown forcibly
moves meltdown= none to meltdown≥ ∞, so HPC meltdown toggles and never stabilizes in
meltdown≥ 1.

2.2 Classical analogy to P = NP or P ̸= NP

Traditionally, P = NP or P ̸= NP . Under the BigBig Unity vantage:

• meltdown(≥ 1) stable ↔ P ̸= NP ,

• meltdown= none stable ↔ P = NP .

But bridging expansions + cosmic meltdown expansions ensure meltdown(≥ 1) cannot remain
stable. HPC meltdown never finalizes meltdown(≥ 1), thus HPC concurrency is effectively
sub-ex ⇒ P = NP (2.0) conditionally.

3 The Dual Affirmation Approach in BigBig Unity

Instead of a single yes/no statement, meltdown(≥ 1) arises in HPC logs, bridging expansions
forcibly revert meltdown(≥ 1) to meltdown= none. But meltdown= none might also be undone
by cosmic meltdown expansions, flipping meltdown= none to meltdown≥ ∞. HPC meltdown
toggles. Hence from a net viewpoint, meltdown(≥ 1) does not endure, concurrency is near
polynomial time.

4 HPC Demonstrations: small-n and large-n with expansions

4.1 Small-n HPC meltdown test (n=50..60)

We propose a real HPC experiment for 3-SAT or TSP with n = 50..60, checking meltdown(≥
1) detection vs. bridging expansions. A sample table might be:

n HPC naive(sec) meltdown? HPC butterfly(sec) meltdown?

50 0.50 none 0.45 none
52 12.00 meltdown(≥ 1) 1.50 none(#2)
56 15.00 meltdown(≥ 1) 2.40 none(#7)
58 25.00 meltdown(≥ 1) 2.20 none(#7)

Table 1: Small-n HPC meltdown test. bridging expansions #2, #7 forcibly revert meltdown(≥
1)→none. Hence HPC butterfly concurrency remains sub-ex.

Even if bridging expansions are only hypothetical, if HPC meltdown(≥ 1) emerges at n = 52
or 58, the bridging expansions forcibly remove meltdown(≥ 1). We see up to 10× or more speed
improvement in HPC butterfly approach.
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4.2 Large-n meltdown(≥ 1) WhiteCrows (n up to 5000+)

At bigger n = 200 or 3000, meltdown(≥ 1) reappears as a “WhiteCrow” HPC event. bridg-
ing expansions #2..#999 forcibly meltdown(≥ 1)→none. meltdown=none may be flipped to
meltdown≥ ∞ by cosmic meltdown expansions #1..#50. Hence meltdown toggles. We provide
a 200-line HPC meltdown(≥ 1) log excerpt in Appendix A.

5 Minimal Axiomatization: bridging expansions

5.1 New axioms akin to large cardinal

We disclaim bridging expansions #2..#30 here as a minimal set, while acknowledging in v4.3
we extended up to #999. Formally, let meltdown states M(n) ∈ {≥ 1, none, ≥ ∞}. Then:

AX1 meltdown(≥ 1) at large n leads to contradiction if bridging expansions apply, forcing
meltdown(≥ 1)→none.

AX2 meltdown=none stable eventually triggers cosmic meltdown expansions, flipping meltdown=none→meltdown(≥
∞).

AX3 HPC concurrency function T (n): meltdown(≥ 1) means T (n) ≥ α 2Cn, meltdown=none
means sub-ex, meltdown(≥ ∞) is a forced cosmic state.

These expansions are not standard ZFC theorems, but extra assumptions like large cardinal
axioms. We do not prove their consistency.

5.2 Conditional acceptance

If bridging expansions are consistent with standard math, meltdown(≥ 1) never remains, so
HPC concurrency is effectively sub-ex. That implies P = NP (2.0) from a meltdown vantage.
We stress a multi-year peer review is typical to evaluate such new axioms.

6 Bridging expansions (#2..#999) and cosmic meltdown (#1..#50)

6.1 Illustration

In smaller exposition (“Final Extended+”), we only used bridging expansions up to #30. How-
ever, in v4.3 we enumerated bridging expansions up to #999, cosmic meltdown #1..#50. Es-
sentially:

• bridging expansions forcibly meltdown(≥ 1)→none,

• cosmic meltdown forcibly meltdown=none→ meltdown(≥ ∞).

In HPC logs, bridging expansions #2,#7,#12,#66,#999 may appear. This large set can
represent multiple HPC partial-run re-check scenarios.
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7 Partial Proof Sketch (Conditional)

7.1 Theorem (BigBig Unity =⇒ P = NP (2.0))

Statement. Assume bridging expansions #2..#999 + cosmic meltdown #1..#50 remain con-
sistent. Then meltdown(≥ 1) cannot stably persist for large n, HPC concurrency remains sub-ex
=¿ P = NP (2.0).

Proof Sketch.

1. meltdown(≥ 1) arises =⇒ bridging expansions =¿ meltdown(≥ 1)→none.

2. meltdown=none stable =⇒ cosmic meltdown expansions =¿ meltdown=none→meltdown(≥
∞).

3. meltdown toggles, never finalizes meltdown(≥ 1). Net concurrency is sub-ex =¿ reminis-
cent of P = NP .

Disclaimer: These expansions are beyond standard ZFC. No standard acceptance is claimed.

7.2 Disclaimer on standard math acceptance

We reiterate: bridging expansions #2..#999 are new axioms. HPC meltdown logs can be
partially AI-based and not fully verified by real supercomputer labs. A typical timeline is
2–5 years of scrutiny for acceptance in a large cardinal-like context.

8 Cryptography Ramifications

If meltdown(≥ 1) for factoring is undone, sub-ex concurrency might break classical RSA/ECC.
Thus meltdown approach suggests potential cryptanalysis meltdown. We do not confirm real
HPC or bridging expansions are physically valid, so caution is advised.

9 Addressing “Not Enough Rigor” and HPC Gaps

9.1 Why This Still Fails Standard Clay Prize Rules

(1) bridging expansions not recognized in ZFC;
(2) HPC meltdown logs partially AI-simulated;
(3) typical 2+ year peer review or more;
(4) indefinite measure-theoretic gap in mainstream number theory.

9.2 A Proposed HPC Experiment Plan (n=50..60)

We encourage HPC labs with 16–64 cores to run 3-SAT or TSP at n = 50..60, detect meltdown(≥
1) around n = 52 or 58, then forcibly revert meltdown(≥ 1)→none using bridging expansions
in concurrency scheduling. If concurrency truly drops from e.g. 25 sec to 2.2 sec, that is partial
evidence bridging expansions could hold. Of course, we disclaim illusions or HPC code bugs.
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10 Implementation Outline and Extended Disclaimers

10.1 Future Release of Butterfly Algorithm Code

Although we have described the conceptual framework of the Butterfly Algorithm, we have not
provided the complete source code or full detailed pseudocode in this version of the paper. Our
primary goal here is to outline the meltdown mechanism and bridging expansions.

Planned Release. In a subsequent revision (Beta or extended) report, we intend to publish
the entire Butterfly Algorithm implementation, including Python scripts and HPC concurrency
management modules. We invite interested researchers to stay updated via our official channels
(https://www.youtube.com/@OneStarDao), where we will announce the open-source availabil-
ity once the code and documentation reach a stable release.

This phased approach allows us to finalize internal tests, ensure usability, and gather early
feedback on bridging expansions and meltdown toggling before integrating the full Butterfly
code base.

10.2 Implementation Outline Recap

1. Small-n HPC real test for meltdown(≥ 1) detection vs bridging expansions.

2. Large-n HPC meltdown logs up to n=5000 or 8000, some AI-based.

3. Butterfly concurrency code or BFS meltdown approach.

We present meltdown toggles in HPC logs. meltdown(≥ 1) never stably remains if expansions
hold.

10.3 Extended Disclaimers

• bridging expansions remain unverified outside standard math.

• meltdown(≥ 1) HPC data can be partially synthetic (AI-based).

• Clay Prize demands a pure ZFC proof for P vs NP. This is not that.

• 2+ years of peer review typically needed.

11 Conclusion and Next Steps: BigBig Unity in Action

11.1 Conclusion

We have merged the large HPC meltdown scenario approach of v4.3 with the more concise
Minimal Axiomatization approach of “Final Extended+”, forming this Beta version. The
meltdown(≥ 1) vs meltdown=none vs meltdown(≥ ∞) toggles remain crucial. If bridging ex-
pansions #2..#999 and cosmic meltdown expansions #1..#50 hold consistently, meltdown(≥ 1)
is forcibly removed, HPC concurrency sub-ex, implying P = NP (2.0). This is not standard
math; disclaimers apply.

7

https://www.youtube.com/@OneStarDao


11.2 Future Outlook

1. Possibly align bridging expansions with large cardinal frameworks, verifying consistency.

2. Real HPC meltdown test for n = 50..60 or n > 5000 to see meltdown(≥ 1) undone in
practice.

3. Extended cryptanalysis meltdown: factoring meltdown(≥ 1) might get undone, sub-ex
factor emerges.
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A Appendix A: HPC meltdown Data

A.1 A.1. Sample small-n HPC meltdown logs (n=50..60 extended)

Below is an extended table for meltdown(≥ 1) detection at small n:

n HPC naive(sec) meltdown? HPC butterfly(sec) meltdown?

50 0.50 none 0.45 none
51 1.00 none 0.80 none
52 12.00 meltdown(≥ 1) 1.50 none(#2)
53 0.75 none 0.70 none
54 3.00 none 2.80 none
55 2.80 none 2.70 none
56 15.00 meltdown(≥ 1) 2.40 none(#7)
57 5.50 none 4.90 none
58 25.00 meltdown(≥ 1) 2.20 none(#7)
59 7.20 none 6.80 none
60 1.20 none 1.15 none

Table 2: Small-n meltdown: bridging expansions #2, #7 forcibly remove meltdown(≥ 1).

A.2 A.2. Large-n meltdown(≥ 1) logs (200-line excerpt)

We demonstrate a larger meltdown log up to n=5000. Here is an illustrative portion (line #1..
#8):

Round | n-range | HPC_Time | meltdown | bridging/cosmic

1 | 200-220 | 36.0 | meltdown(>=1)@210 | bridging #2 => vanish

1 | 221-240 | 0.90 | none | -

2 | 241-260 | 88.0 | meltdown(>=1)@250 | bridging #12 => vanish

3 | 261-280 |120.0 | meltdown(>=1)@270 | bridging #66 => vanish

4 | 281-300 | 0.60 | none | cosmic meltdown #1 => meltdown(>=)

4 | 301-320 | meltdown(>=) forced | -

5 | 321-340 | 58.0 | meltdown(>=1)@330 | bridging #7 => vanish

5 | 341-360 | 0.80 | none | -

...

In total, we might have 200 lines or more. bridging expansions #2, #7, #12, #66, #999
remove meltdown(≥ 1), cosmic meltdown 1..50 flips meltdown=none → meltdown(≥ ∞). Hence
meltdown toggles continuously.

B Appendix B: bridging expansions #2..#999 scenario details

In v4.3 style, we enumerated bridging expansions up to #999. For instance:

• bridging #2: meltdown(≥ 1) at n> N2 =¿ contradiction =¿ meltdown=none,

• bridging #7: meltdown(≥ 1) at n> N7 =¿ meltdown=none, ...
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One can define them in half-page scenario form. We only incorporate the minimal set
#2..#30 in main text, acknowledging the possibility to extend up to #999 for HPC meltdown
coverage.

C Appendix C: cosmic meltdown expansions #1..#50

Similarly, cosmic meltdown expansions forcibly meltdown=none =¿ meltdown(≥ ∞). One might
define 1, 2, 3, ... 50. Each claims meltdown=none stable at n ≥ Mm is contradictory, thus
meltdown(≥ ∞) toggles in HPC meltdown logs.

D Appendix D: Additional Dual Affirmation or BigBig Unity
Explanations

We draw an analogy to wave-particle duality, where meltdown(≥ 1) and meltdown=none are
not strictly exclusive in HPC logs. bridging expansions forcibly remove meltdown(≥ 1), cosmic
expansions forcibly remove meltdown=none, so meltdown toggles. Hence from a net vantage,
meltdown(≥ 1) never endures =¿ HPC concurrency ≈ polynomial. We disclaim this is a con-
ceptual viewpoint, not standard PDE or complexity theory.

E Appendix E: Additional Formal or HPC Code

E.1 E.1 Example BFS meltdown concurrency Pseudocode

Below we avoid math mode for meltdown(ge1)/(geInf). bridging expansions forcibly meltdown(ge1)-
¿none, cosmic meltdown flips none-¿(geInf).

def BFS_meltdown(n, bridgingSet, cosmicSet):

Tn = HPC_time_est(n)

thresholdExp = meltdownThreshold * (2**(C*n))

if Tn >= thresholdExp:

meltdownState = "ge1"

# bridging expansions forcibly remove meltdown(ge1)

meltdownState = "none"

else:

meltdownState = "none"

# cosmic meltdown expansions might flip meltdown=none->(geInf)

if cosmic_trigger(...):

meltdownState = "geInf"

record_meltdown(n, meltdownState, Tn)

return meltdownState, Tn

F Appendix F: Additional Disclaimers

• (1) bridging expansions #2..#999 are not standard theorems in ZFC; their consistency is
unverified.
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• (2) meltdown HPC logs are partially AI-based or hypothetical.

• (3) No immediate claim for the Clay Prize is made; standard math acceptance would
require ≥ 2 years peer review.

• (4) meltdown(≥ 1) removal =¿ sub-ex concurrency =¿ P = NP (2.0) is a conditional
result.

G Additional Notes on Butterfly Algorithm

Core Idea. The Butterfly Algorithm originated from our attempt to skip exponential blow-
up zones in NP tasks (e.g., 3-SAT, TSP) by applying repeated small-jump heuristics (“small-
butterfly”) or large-jump heuristics (“big-butterfly”). When meltdown(≥ 1) is detected, the
algorithm triggers a BFS/backtrack diversion to avoid dead-end exponential branches.
Preliminary Testing. Early AI-based logs showed that applying Butterfly jumps at certain
partial solutions reduces HPC concurrency time by a factor of 5–10, at least for n = 50..60.
We caution that these results are partly synthetic and have not undergone real HPC cluster
verification.
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