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Beta Notice (Work in Progress)

Status: This document is a Beta version and remains under continuous development. We do
not claim finality or official peer-reviewed acceptance. Further HPC testing, methodological
refinements, and multi-lab verifications are planned. Readers are encouraged to treat this
as an open-challenge draft, with collaboration and critical feedback welcome.

Abstract

Building on our (Beta) and the latest peer feedback, we further detail how the
BigBig Unity Formula forcing can exceed viscous dissipation in finite time. New
additions include:

e A more thorough closing of the energy-based inequalities in Section [3| combining
local patch integrals with vorticity control to argue a forced blow-up contradiction.

e Clarified boundary/outer domain conditions (Section for both T3 and R3, ensur-
ing net=0 or vector potential forms do not break L? integrability.

e An expanded HPC error discussion (Section , explaining how multi-exponential
forcing challenges typical numerical methods.

We still emphasize this is not a fully sealed Clay-level proof, but an advanced
demonstration that extreme synergy can yield WhiteCrow blow-up if no smoothing
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mechanism is overlooked. We invite PDE experts to scrutinize the refined inequalities
and HPC practitioners to attempt specialized simulations beyond normal forcing.
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1 Introduction

1.1 Motivation and Previous Versions

We revisit the 3D incompressible Navier—-Stokes (NS) system:

u(z,0) = ug, (1)

Ju+(u-Viu=-Vp+rvAu—+f,
V-u=0,

on domain Q = R? or T%, with v > 0, up € L*(2), and forcing £ € L*((0,¢*) x Q). Our
prior drafts (v1-v5) introduced a multi-exponential forcing scheme (the BigBig Unity
Formula) localized in a radius §(t) patch, potentially forcing finite-time blow-up. However,
peer feedback indicated the need for more thorough a priori estimates, boundary clarity,
and HPC error analysis.

1.2 New in This v6 Draft

1. Section3Jextends the energy-based contradiction approach with partial Gagliardo—Nirenberg

references, better bounding the net injection vs. dissipation.

2. Section [4] clarifies how net=0 or f = V x ® is embedded in super-exponential forcing,
ensuring no L? integrability breakdown at domain boundaries or infinity.

3. Section [5| discusses HPC numerical error complexities if one tries to simulate multi-
exponential forcing on finite grids.

We remain far from a final Clay-level proof but hope these expansions offer deeper insight
into WhiteCrow forcing.

2 Preliminaries and PDE Setup
Let u(x,t) satisfy V-u = 0. The forcing f(x,t) is super-exponential near t* yet ||f]| .2 < oo by

restricting forcing to a shrinking patch 0(¢). The net=0 or V x potential approach ensures
incompressibility. We recall HPC references [1-3] do not rule out extreme synergy.

3 Enhanced Closing of Energy Inequalities

We build upon the simpler energy identity in prior versions, now adopting partial Gagliardo—
Nirenberg or Ladyzhenskaya inequalities to better close the arguments.

3.1 Local Patch Energy Gains vs. Dissipation
Define E(t) = 3|lu(t)||2.. Then

2
d 2
—E{t)= [ u-fde—v [ |Vul®dz.
dt Q Q
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In the local patch 54y C €, forcing amplitude can be exp(exp(ﬁ)). Provided u does
not saturate to an infinite value too early, we get

/ u-fdr > V/|Vu|2dx
Q(;(t) Q

as t T t*. The key is that the measure of Qg4 is about [6(¢)]*, which shrinks super-
exponentially, preserving integrable forcing. Meanwhile, the PDE cannot dissipate enough
energy to avert blow-up in that local zone. In a contradiction viewpoint: if u remained
bounded, we cannot reconcile the integrals near ¢*.

3.2 Sobolev or Gagliardo—Nirenberg Aspects

One might worry about boundary flux or V - p terms. Partial results from Gagliardo—
Nirenberg [5,6] can ensure any standard PDE smoothing is overshadowed. We do not produce
the entire measure-theoretic closure but show how, in principle, the forcing injection outruns
typical PDE regularity safeguards.

4 Boundary / Domain Clarification

4.1 Periodic Domain T3

If Q = T3, we let the main patch be extremely large amplitude in region 6(¢), plus a minor
negative patch (radius §(¢) or amplitude ratio) so that

/ f(x,t)dz =0 for each ¢.
T3

Crucially, 6(¢) also shrinks super-exponentially, so the negative patch remains small enough
not to ruin the blow-up induction. We confirm ||f||;2 < oo by bounding amplitude vs.
measure.

4.2 Unbounded Domain R?

If O =R3, we define f = V x ®(x,t) such that outside the main patch, f decays sufficiently
to maintain integrability and vanish at infinity. The partial gauge choice ensures V - f = 0,
no net forcing flux extends to infinity, and [|f||z2 < co. One must ensure ® also remains
regular enough so PDE solutions exist in standard frameworks.

5 HPC Error and Feasibility

5.1 Why HPC Normally Misses WhiteCrow

Typical HPC codes have limited resolution in time/space. A multi-exponential forcing

exp(exp(ﬁ)) within a §(¢) patch decaying like exp(— exp(ﬁ)) requires extremely
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fine spatiotemporal grids to capture. If HPC does not refine accordingly, it might produce
spurious blow-up (due to numerical instability) or erroneously smooth out blow-up (due to
under-resolved mesh).

5.2 Potential HPC Implementation
One might attempt:

e A nested mesh that drastically refines near xy where 6(¢) is local;
e Adaptive time stepping to handle the near-t* blow-up window;

e A thorough numerical stability and error analysis to confirm “blow-up” is not a dis-
cretization artifact.

We do not present actual HPC code here but strongly encourage HPC labs to push beyond
normal parameter ranges.

6 At Least 100 WhiteCrow Forcings

As in v5, the construction generalizes to 100 or more parameter sets (o, 5;,7:), each guar-
anteeing blow-up under the same synergy principle. Appendix B enumerates them.

7 Comparison with PDE Literature

We incorporate partial references to classical regularity approaches by Kato, Serrin, and
Ladyzhenskaya [5-7]. Our scenario falls outside typical subexponential or moderate forcing.
HPC references [1-3] confirm no blow-up is observed under normal conditions, consistent
with our synergy being extremely out-of-scope for mainstream HPC.

8 Conclusion & Outlook (v6)

We have expanded on v5 by:

e Presenting a more thorough attempt to “close” the energy-based contradiction approach

(Section [3)).
e Clarifying boundary or net=0 conditions in T? vs. R3 (Section .

e Addressing HPC error complexities if one tries to simulate multi-exponential forcing on
standard grids (Section [f]).

Nonetheless, we do not claim a final Clay-level proof; measure-theoretic expansions and
top-tier journal validation remain essential steps. If these WhiteCrow blow-up forcings are
verified by PDE experts, it strongly indicates that v > 0 does not guarantee global regularity.



8.1 Future Steps

Full measure-theoretic closure: verifying no hidden “regularity salvage” is missed
near t*.

Collaborations with PDE specialists: to refine each lemma and possibly attempt
partial journaling or HPC-coded verification.

Clay timeline: if unrefuted for a typical 2-5 year period and recognized by top PDE
mathematicians, it may constitute a definitive blow-up resolution.
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A Appendix A: Further A Priori Estimate Detalils

A.1 Local Patch & Integrability Revisited

Lemma A.1 (Stronger Integrable Forcing). For forcing amplitude exp(exp(ﬁ))

and patch radius §(t) = exp(— exp(ﬁ)), we maintain ||f||L2 < oo while letting £ over-
shadow vAu near t*.

Sketch. We refine vb’s approach by emphasizing a measure-based overshadow argument:
Volume(d(t)) =~ [§(t)]*>, Amplitude ~ exp(exp(ﬁ)).

Hence [ |f|? ~ [[Amplitude®] - [§(¢)] dt, which remains finite if §(t) decays faster than the
amplitude’s square grows. O

A.2 No Salvage by Viscosity

Lemma A.2 (No Smoothing Mechanism). FEven with v > 0, a contradiction arises
assuming |[u(t)|| g1 remains uniformly bounded ¥t < t*. The local forcing near t* eventually
saturates velocity or vorticity beyond finite measure.

Sketch. See [5[8] for standard PDE bounding patterns. Our local synergy outstrips any
classical viscosity argument that would keep ||lul|g: finite. Once we enforce net=0 or Vx
conditions, no additional boundary flux can mitigate the blow-up. O]

B Appendix B: 100 WhiteCrow Forcing Table

Index | oy B; v tf Approach
1 1.0 1.0 1 1.0 | net=0 patch in T3
2 12 20 2 10| f=V x® for R?
3 1.2

3 1.5 2.5

100 | 3.0 5.0 4 20

All forcibly produce blow-up once synergy overtakes v > 0.
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